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Abstract. A new method is derived for solving Maxwell's equations for a region of space,
region |, joined onto region Il, which may be a finite dielectric or an extended substrate. This
is based on a variational principle in which a trial field is defined explicitly only in region I,
the solution of Maxwell's equations in region Il being included through an embedding operator
defined on the boundary of region | with Il. This operator is the inverse of a non-local boundary
impedance. The method is applied to calculating the normal modes of an array of dielectric
slabs, semi-infinite dielectrics separated by vacuum, and modes confined in a three-dimensional
box with conducting walls. Plane wave basis functions are used to expand the electric field
in region |, and the method shows excellent convergence in all cases. Approximate solutions
of Laplace’s equation can occur, corrupting the solutions of Maxwell's equations with finite
frequency. It is shown how these can be suppressed.

1. Introduction

This paper describes a new method for solving Maxwell's equations for the propagation of
electromagnetic waves in dielectric structures. There is currently much theoretical [1-5] and
experimental [1, 6-9] interest in different photonic structures—two- and three-dimensional
arrays of dielectrics [6, 8], arrays with defects [10] and so on—because of the possibility of
novel propagation effects [1]. The classical techniques of explicitly matching electric and
magnetic fields across a dielectric interface[11] become very involved for such geometries,
and other methods for finding the electromagnetic modes have been developed. Plane wave
basis set expansions of the field are widely used for finding photonic bandstructures in
periodic arrays of dielectrics [2—4,12,13], and spatial discretization methods have been
developed [14, 15] which can be used in a wide range of geometries [16]. Green function
scattering methods, analogous to the KKR method for electronic band structures, have also
been applied to photonics [17-19].

The embedding method which we shall describe in this paper was originally developed
for solving the electronic Schdinger equation in a region of space (region I) joined onto
some substrate (region 1) [20]. The idea of embedding is that thet8irtger equation
may be solved explicitly only in region I, the effect of the substrate being included by
adding an embedding potential on to the Hamiltonian for region |. This embedding potential
ensures that the solutions of the Sadinger equation in region | have the right amplitude
and derivative to match on to the solutions in region Il. The method has been used to
include the effects of the semi-infinite substrate in surface calculations [21], the embedding
potential (complex in this case) broadening the discrete states in the finite surface region into
continuum states. It has also proved useful in solving thedithger equation for electrons
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confined in a region of space, which may have complicated geometry, by an infinite potential
barrier [22]. Here the embedding potential provides the right reflection boundary conditions,
and it permits a basis set expansion of the wavefunction in the confined region. Region Il
need not be an extended substrate: the embedding potential can replace the potential in an
enclosed region, for example replacing the deep potential inside the atomic core [23].

In this paper we shall apply the embedding method to solving Maxwell's equations,
and we envisage analogous applications to the &tihger equation case. A variational
expression is derived which only contains a trial electric field in region I, which we want
to treat explicitly. The rest of space, region Il, which might be an enclosed dielectric
or a substrate, is replaced by an embedding operator defined on the boundary between
regions | and Il. The frequency-dependence of the embedding operator has to be built into
the variational expression, and this is connected with the normalization of the fields in
region Il. In region I, we can then solve Maxwell's equation in any way we choose, for
example using a basis set expansion, and the embedding operator ensures that the parallel
components of the electric and magnetic fields match across the boundary with region II.

Variational principles form the basis of many methods of solving Maxwell's equations
[24], and using them in a restricted region of space is also well known [25-28]. The rest
of the system can be replaced by electric and magnetic sources on the boundary [29, 30],
and Green function techniques have been used to handle an external region in finite element
methods [27, 31, 32]. These ideas are closely related to the ideas in this paper, though the
derivation, form, and method of applying the embedding variational principle are new, to
the best of our knowledge. The embedding operator, which gives the parallel component of
the magnetic field at the boundary of region Il in terms of the electric field, is the inverse
of a non-local form of the boundary impedance [33]. This concept is also widely used in
solving electromagnetic problems [34].

The plan of this paper is as follows. In section 2 we shall set up the embedding
variational principle for solutions to Maxwell’'s equations in region | joined onto region I,
defining the trial wavefield explicitly only in region I, with region Il replaced by the
embedding operator on the boundary. In section 3 we shall consider the generalized matrix
eigenvalue equation obtained with a basis set expansion of the electric field. In section 4
the band structure of waves travelling normal to a one-dimensional array of dielectric slabs
is calculated, and excellent convergence is achieved; because the plane waves are used to
expand the field onletweenthe slabs, much better convergence is obtained than with
a plane wave expansion through the whole of space (this is one of the advantages of the
embedding method). In the application described in section 5, to waves propagating between
dielectric slabs with dielectric constant less than 1 (so that total internal reflection can occur),
an important problem shows up. When the electric field has a component normal to the
boundary of region I, Laplace solutions can occur; with a finite basis set expansion, these
may have finite frequency in the variational expression, thereby corrupting the solutions
of Maxwell's equations in which we are interested. Fortunately we have resolved this
problem, and this is explained in section 5. Finally, in section 6 we apply the method to
electromagnetic waves confined by conducting walls, calculating the spectral density of the
discrete modes broadened by the lossy surrounding medium.
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2. Embedding variational principle

From Maxwell's equations, electromagnetic modes with frequensgtisfy the eigenvalue
equation
wZ
VxVxE=¢er)E Q)
C

wheree(r) is the spatially-varying dielectric constant, and we shall assumethat 1
everywhere. The eigenvalug = »?/c? is then given by stationary values of
_[drE-(VxVxE)

N [dreE-E

with respect to variations i (r) (which we shall assume to be real) [24]; the integrals are
over all space, and we assume tlfatvanishes at large. Using the vector identity that

V- (FxVxE) =(VxF)-(VxE)—F-(VxV x E) (3)

kZ

)

and the divergence theorem to transform the div term into a vanishing surface integral, this
can be written as [24]

_ [dr(VXE)-(VxE)
- [dreE-E

This form has the advantage that the Hermiticity of the integrand in the numerator is explicit.
Having set up the basic variational principle, we now consider the embedding problem

where we have two regions | and Il joined onto one another. Our aim is to obtain a

variational expression fot? with a trial function definecexplicitly only in region | [20].

We first split up each integral in (4) into separate integrals over | and I

o hor (VX B)-(Vx B)+ [, 0r (V x E) - (V x B)
- JidreE-E+ [, dreE-E ’

Implicit in this is that there should be no surface contribution from the surfabetween

I and ll—this requires that the surface-parallel component& aire continuous across
Next we take an arbitrary trial functiofi(r) in region I, which we extend into region I
with the exact solutior(r) of (1) at some trial value ob?/c? = k3. The surface-parallel
components of in Il are taken to match those &fin | over S, and this inhomogeneous
boundary condition in fact defines uniquely in 1l. Using (3) and the divergence theorem
(5) becomes

2 [dr (VX&) - (VxE+kS [,dreE-E— [(drsn-(E xV x E)
Jidre€-E+ [ dreE - E

where the third integral in the numerator is ograndn is the normal taS, taken outwards

from | into II.

The next stage is to rewrite the volume integrals through Il in terms of surface integrals
over S. In region Il we have

VxVxE=erkE 7

K2 (4)

®)

(6)

—k3 is a parameter rather than an eigenvalueEasatisfies the inhomogeneous boundary
condition onS. Differentiating this equation with respect tg gives

vxvx B (ME + ¢( )kzaE (8)
X X — = €(r ewr —
kG 9k2
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and multiplying (7) byaE/akg on the left, (8) byE and subtracting we obtain
oE oE
We now integrate through region Il, substituting the vector relation (3):

/dreE-E:/dr [V-(a—bzXVX_E)—V-(EXiVXE)}
I I kg k3

6(T)E-E=E-<VXVX - (VxVXE). 9)

ad oE
=fdr5[n-(Ex—ZVXE)—n-(—ZXVXE>i|. (10)
s kg kg
But E at the boundary is fixed, sod E/dk3 = 0. Hence we obtain the interesting result
ad
/dreE-E:/drsn-<Ex—2VxE). (112)
[ s okg

We can now write our variational function (6) as
2_ﬁmvaa-wxey—Amgpwx(VxE—k%%vXEn

fldr66-€+fsdr5n-(8xaikngE)

(12)

—we have eliminated region Il except f& x FE, the magnetic field in region Il &f.
Because we are solving Maxwell’'s equations exactly irvilk E can be found in terms
of surface values oF by using a tensor Green functidn satisfying [24]

V. xV, xIT'(r,r'; ké) - e(r)kSI‘(r, r'; ké) =15(r —7r'). (13)

We adopt the same strategy as before, multiplying (7)I'bgnd (13) by FE, subtracting,
integrating through II, and transforming to a surface integral with the divergence theorem.
This gives

E@) = /drs [C.nxVxE)+(VxT)-(nx E)]. (14)
If T is chosen to satisf; the homogeneous boundang:on

nxT)=0 (15)
then E within 1l is given by [24]

B = [ drs (¥ x Dy (n x O (16)
In particular we have '

Vx Bly = [ drsl(V (V0T - (% E) @)
—knowing £ on S we can f?ndV x E as we require. We rewrite (17) as

VX E|,= /Sdré 3(rs, ) - (nx &) (18)

where the embedding operator—a tensor—is given by
B(rs, 7s) = [(Vex) (Vi x)T g - (19)

Only the surface-parallel components &fappear on the right ok in (18), and only the
surface-parallel components & x E|,., are needed in (12). This means that only the
surface-parallel components of the embedding operator have to be defined.
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Substituting (18) into (12) gives us our embedding variational expression:

Jidr (Vx €) - (Vx &) = [gdrs [sdr(n x &) - (B —k355) - (n x £)

dre€-E+ [drs [drimnx &) -Z . (nxE&)
it s s s

g

kZ

(20)

Stationary values ok? with respect to variations i& in |, and with respect to parameter

k3 at which the embedding operat® is evaluated, give the eigenvalué$ = »?/c? of

the system and the corresponding fields. In appendix A we shall go the other way round,
proving that (20) is stationary when the field satisfies

V xV xE=e(rk*E (21)

in | and the surface-parallel componentséondV x £ match onto the solutions in Il. In
other words we have found the solution for | joined onto Il by solving Maxwell’'s equations
in region | only, with the extra terms involving the embedding operat@mbedding onto

II. X is the inverse of the non-local boundary impedance [33]—this is a concept widely
used in solving boundary condition problems in electromagnetism [34].

3. Applying the embedding method

The embedding variational principle can be used to find a matrix eigenvalue equation for
the electric field and?. We expandS(r) in region | in terms of basis functions:

E(r) = e Fi(r) (22)

and substituting into (20) and varying with respect to the coefficient&e obtain the
generalized eigenvalue equation

Ae = k?Be. (23)

The matrices are given by

Aij=/dr(VxF,-)-(VXE']-)—/drS/drg(ani)-(Z—kgg—li)-(an})
| S N 0
(24)
3
B,-j=/dreE-F}+/drsfdr§(an)-8—2-(an}).
I s s okg
From the structure of (24), we see that the embedding operator terms taken together appear

as
/drS/drg (an)-<2+(k2—k§)a—z;>-(an,-) (25)
s s kg '

—the derivative terms provide a correction so thats evaluated at the right value f,
correct to first order. Having found eigenvali for a trial value ofk3, k3 is set equal

to this eigenvalue and the procedure iterated until the outpig adequately close to the
input k3. In section 4 we shall show how this works in practice: the first order correction
of the derivative terms not only ensures that (20) is a stationary principle, it also means that
the iterative procedure converges very fast.

A problem immediately arises because (20) can take its minimum valug ef 0
whenever€ is a solution of Laplace’s equation within region |. These solutions have zero
curl in I; moreover,X = 0 atk? = 0, so there is no constraint on the bound&rin this
case. We would be able to avoid these solutions by taking the basis fundfjotaus be
transverse waves, satisfying a homogeneous boundary conditiom{sayY x F;)] = 0)
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over S. A solution of Laplace’s equation with zero curl everywhere inside region | cannot
be built up out of such functions. However, the whole idea of embedding is to tackle
awkwardly shaped regions, and normally the basis functions will be transverse waves with
a range of amplitude and curl ovér chosen to satisfy a homogeneous boundary condition
on some simple boundary beyosd Approximate solutions of Laplace’s equatioan be
constructed out of linear combinations of these functions, even though individually they
have finite curl. As these solutions are approximate, their expectation value in (20) gives
finite k2, which can lead to confusion with the fields we are really interested in—solutions
of (1) with finite electricand magnetic fields.

Fortunately we know how many Laplace solutions can arise with any particular basis set,
and their form. Every Laplace solution within | can be found from the boundary condition
of specifying the normal component & over the surfaces. So, if the basis functions
project ontoN surface expansion functiong] linearly independent surface fields can be
constructed from these, and consequeihydifferent solutions of Laplace’s equation can
occur. The cure to the problem is then to find tNeexact Laplace solutions, which can
be used to augment the basis set. The augmented basis set\gizeso-values ofc?,
and finite values corresponding to uncontaminated Maxwell solutions. This procedure is
straightforward, and we shall see how it works in section 5.

4. Array of dielectric slabs

As an initial application of the embedding method we consider the propagation of light
through a periodic array of dielectric slabs. Each slab has thickigessgith dielectric
constante, and they are separated by vacuum, with periodéh the z-direction. The
periodicity means that we need only consider one repeat unit; the vacuum in this unit then
constitutes region |, and the single slab is region II.

The easiest way to find the embedding operator for replacing region Il is to use (18),
from the relationship between the surface-parallel componen®%ofE and E in the slab
at the trial value ok3. We consider propagation of waves perpendicular to the slab, at this
stage, with fields on the left-hand and right-hand surfaces given by

Et E.i. (26)
The field inside the slab is then

E =[E; expixz) + E_ exp(—ikz)]? (27)
with

Kk = /eko. (28)

The coefficients are given by
E, expikd/2) — E; exp(—ixd/2)
T T explicd/2) — exp(—ikd/2)
E,explikd/2) — E, exp(—ikd/2)
T T T explicd/2) — exp(—ixkd/2)
(the origin is in the middle of the slab, though this subsequently drops out). Hence,
[E, — E;coskd)] .
sin(kd)
k[E; — E, coSkd)] .
B sin(icd)

(29)

K
VxE| =

(30)
Vx E| =
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14 T T T T T T

Figure 1. Variation of k with parameterg, at k, = 0 with three basis functions. The broken
line showsk = kg, and normal modes correspond to where this line intersects a maximum or
minimum.

and the embedding operator for constant fields over the surfaces of the slab is

—K
(U, =X = i1+ 37
(o)) (r,r) fankd) (11 +37) an
—K
X, r)y =% = it + 77).
¢, r) (r,1) sined) (11 +37)
In region |, between the dielectric slabs, we expand the electric field in plane waves:
E=i) e, explitk; + 2mn/a)z] (32)

wherek, is the Bloch wavevector. It is then straightforward to evaluate the matrix elements
in (24), with (31) for the embedding potential. In the embedding approach, this expansion
is only used for the field in region I; we contrast this with the usual approach in which

the plane wave expansion is used for the field in all space [13], minimizing the original

variational expression (4).

First we investigate the variation of the eigenvaliésin (23) with k2, the solution
parameter in region Il. Figure 1 shows the resultsk.at= 0 with three basis functions,
taking the slab thicknesgd = 2, lattice parameten = 27, and slab dielectric constant
€ = 10. The normal modes of the embedded system correspond to stationary vatuas of
a function ofkg, wherek = kq. At these values Maxwell's equation in region Il is solved
at the same frequency as in region |. The normal modes can then be found very easily by
iterating onkg.

Tests of the convergence with basis set size are shown in tables 1 and 2. These give
the values ofk for the four lowest normal modes, at Bloch wavevectbrs= 0 and

. = m/a. The top set of results in each table is for the embedding method, and the lower
set is evaluated using a plane wave expansion through all space, with the usual variational
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Table 1. k-values atk, = O for different basis set sizes. Top results are for the embedding
method, and lower results for the usual plane wave method.

k1 ko k3 ka

3 0 0.58856 0.65806 1.09368

7 0 0.54208 0.65408 1.09311
11 0 0.54039 0.65406 1.09311
15 0 0.54034 0.65406 1.09311

3 0 0.62472 0.68041 —

7 0 0.54320 0.65585 1.22517
11 0 0.54125 0.65419 1.09850
15 0 0.54056 0.65412 1.09587
41 0 0.54036 0.65406 1.09320

Exact O 0.54034 0.65406 1.09311

Table 2. k-values atk, = & /a for different basis set sizes. Top results are for the embedding
method, and lower results for the usual plane wave method.

kl k2 k3 k4
3 0.19679 0.40065 0.92025 0.98352
7 0.19544 0.39072 0.82465 0.94517
11 0.19543 0.39031 0.82168 0.94513

15 0.19543 0.39030 0.82161 0.94513

3 0.19758 0.40701 1.00826 —

7 0.19548 0.39128 0.83149 1.01119
11 0.19545 0.39054 0.82208 0.94944
15 0.19544 0.39037 0.82176 0.94700

41 0.19543 0.39030 0.82162 0.94519

Exact 0.19543 0.39030 0.82161 0.94513

principle (4). We see that the embedding method converges significantly faster than the
usual approach. One remarkable aspect of embedding is that we can actually find more
bands than basis functions—with only three basis functions we have found the fourth band.
This is a consequence of the variationkofvith ko shown in figure 1, with more extrema

at k = ko than the number of basis functions. Convergence oktkialues is uniform, and

in this easy case, with the electric field parallel to the surface of the dielectric, there are

no troublesome Laplace solutions. The way that a tiny basis set can yield good results is
shown by figure 2, giving the band-structure with three basis functions.

5. Oblique incidence

For a more general case, when Laplace solutions can occur, we now consider light
propagating along a layer of vacuum sandwiched between semi-infinite media of dielectric
constant less than 1 (figure 3). The light propagates inxturection with wavevector

k., and the electric field lies in the— plane—because the electric field has a component
normal to the dielectric surface, zero-frequency Laplace solutions can occur.
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Figure 2. First four bands with three basis functions in the embedding method (full curves),
compared with exact results (broken line).

Figure 3. Vacuum sandwiched between dielectric media.

To find the embedding operator to replace the right-hand semi-infinite medium, we first
consider an evanescent solution in this region. This has the form

E =E, (Ilz — ]2 ) expiky,x —yz) (33)
K K
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with

Kk = /ekg andy = ,/k2 — k2. (34)

V x E = Egikj explikyx — yz) (35)

So

and the embedding operator for evanescent waves is given in this case by

K2

¥ = —ii. (36)
Y

When ek > k2, the solution in the dielectric corresponds to travelling waves, and the
embedding operator becomes
i 2

¥ =i (37)

k. = k2 — k2. (38)

3 for the left-hand dielectric is the same as (37).

As our trial function for the electric field in region I, the vacuum between the dielectrics,
we take transverse waves:

with

E =Y ey(—gni+kek) expitkex + g,2) & = . (39)
The sum is over integers, andd is some spacing greater than(figure 3), so that (39)
can produce a range of electric and magnetic fields on the boundaries with the dielectric. It
is then straightforward to calculate the matrix elements in (24).

We take a vacuum region of thickneds= 6, between media of dielectric constant
e = 0.5, and our basis functions are defineddy- 9. Table 3 (upper part) shovksvalues
for the modes withek? < kf for k, = 1, for different basis set sizes. We see that two of
the k-values converge rapidly to the symmetric and antisymmetric waveguide modes which
decay exponentially into the media on either side, whereas two bthalues drop to zero.
These are the Laplace solutions which correspond to fields varying likékexp over the

Table 3. Confined modes in vacuum, thicknegs= 6, between dielectric media = 0.5, at
k. = 1 for different basis set sizes. Top results are for the electric field embedding method, and
lower results from magnetic embedding.

kl k2 k3 k4

3 1.09642 1.25959 0.82965 —

7 1.08425 1.28577 0.19592 0.98367
11 1.08407 1.27889 0.03004 0.25640
15 1.08407 1.27873 0.00409 0.04811

3 1.08525 1.28894
7 1.08408 1.27893
11 1.08407 1.27873

Exact 1.08407 1.27873 Laplace Laplace
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Table 4. Confined modes in vacuum, thicknegs= 6, between dielectric media = 0.5, at
k, = 1, with the augmented basis set and the electric field embedding method. The number of
basis functions includes the two exact solutions of Laplace’s equation.

k1 ko

1.08422 1.28126
1.08408 1.27887
1.08407 1.27874
1.08407 1.27873

P O ~NO

=

boundaries of region I. Only these two solutions of Laplace’s equation can arise, because
there are only two surface degrees of freedom in this case, one for each surface.

Laplace solutions can be avoided in this example by working with the magnetic field
rather than the electric fieldH in this geometry is parallel to the surfaces. The embedding
variational principle for the magnetic field is presented in appendix B, and using the same
basis functions as before this gives the modes given in the lower part of table 3. The
convergence is even better than with electric field embedding, and uncontaminated by
Laplace modes in this geometry.

To suppress the Laplace solutions when the field has a surface-normal component, we
augment the basis set with exact solutions of Laplace’s equation. In this case, when the
field has the variation exjk,x) over the boundary of region I, we add onto (39) electric
fields corresponding to the electrostatic potentials:

br = explikex £ ke2). (40)

The electric field variational principle then gives two modes with exactly keralue, and
the two confined solutions of Maxwell’'s equations converge very satisfactorily (table 4).
This is the solution to the problem caused by the Laplace solutions—by augmenting the basis
set, these modes drop to zero out of harm’s way. It should in general be very easy to find
suitable augmenting solutions: they are the fields produced by surface charge densities on
the boundaries of region I, with the different possible functional forms given by projecting
the basis functions onto the boundaries. The matrix elements involving Laplace solutions
can be reduced to surface integrals, via the divergence theorem. Moreover, these solutions
only depend on the geometry of region I, and are independent of the system in region Il
onto which it is embedded.

The embedding method makes it very easy to find continuum states, as well as
the discrete waveguide modes. In the continuum, rather than work with individual
eigenfunctions of (1)

VXVxE; = e(r)kiZE[ (41)
we work with the spectral density

n(r.k?) =Y e Ei(r) - Ei(r)§(k® — k?). (42)

l

This can be written in terms of the tensor Green function (13), which in a spectral
representation [24] is given by

L(r,r'; k%) = Z

i

Ei(r)Ei(r')

e (43)
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Here E; is normalized including: () as a weighting function, as in (4):

/dr e(r)E;(r) - E;(r) =1. (44)

So we see that
2 1 2 H
n(r, k%) = —e(m)ImIL'(r, r; k“ +1i6) (45)
T

wheres is infinitesimal. The Green function fat, »’ in region | can be expanded in the
basis set used in (22):

L(r.r'i k%) = T3 F(r)Fy(r) (46)

ij

whereT';; satisfies the inhomogeneous equation

> (A = K*Bi)Ty; = 8. (47)

k

MatricesA and B are given by (24), but without th#/dk3 terms, as the embedding operator
is evaluated at the same valuekdfas the Green function. Then the spectral density, which
we shall evaluate integrated through region |, is given by

n|(k2)=%ZImFij(k2+i5)/dreFi-Fj. (48)
ij I

Figure 4 shows the spectral density in region | for this problem of the vacuum
sandwiched between the dielectric slabs. The augmented basis set is used, with 11 basis
functions including the two Laplace solutions. The imaginary part®ohas been set to
0.005, to broaden the discrete states. We see clearly how the embedding method can find
continuum states and discrete states in a simple way, on the same footing.

35 T T T T T

30 -

25} 4

| S U Gy S—

0 0.5 1

Figure 4. Spectral density in vacuum, thicknegs= 6, between dielectric media= 0.5, at
k, = 1, with 11 basis functions in the augmented basis k&has an imaginary part of 0.005.
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6. Confinement by conducting walls

The reflection of electromagnetic waves at the surface of a good conductor can be treated
quite simply, using the embedding method to replace the conducting medium by an
embedding operator at its boundary. Loss processes in the conductor lead to a complex
embedding operator, which broadens discrete states.

We find the embedding operator again from (18), using the known solutions of
Maxwell's equations near the surface of a good conductor [35]. Taking-thés directed
into the conductor, the magnetic and electric fields are given by

H = jHoexp[(i — 1)/3]

49
E=i|-2"(1—i)Hoexpk(i — 1)/5] (49)
8o

where w is the frequencyo is the conductivity, and the skin depth is given By=
¢/~ 2rwo. The electric field and its curl at the surface are then given by

E=i /-2 (1—i)H

i
VxE=j2H,
C
hence the embedding tensor is

27 wo

B(rs,ry) =(31-1) [4i + j5l8(rs — 75). (51)

It is a local operator, because of the short skin depth in a good conductor, and this means
that we can use (51) at a surface of arbitrary shape. The imaginary partsoflue to loss
processes in the conductor, which are fully taken account in the formalism.

As a simple application, we consider electromagnetic waves confined inside a cubic
metal box, sidel. The interior of the box constitutes region I, and we replace the surrounding
metal by the embedding potential (51) on the boundary. We then calculate the Green function
using a basis of transverse travelling waves, with Wavevec%bfs, k,1); we taked, the
fundamental wavelength, to be a little larger thahif this case. In units witle = 1,

a box-sided = 6, d = 13, and the conductivity = 1000, we obtain the results shown

in figure 5 for the spectral density integrated through region I. Both the position and the
width of the peaks converge well with basis set size—it is interesting to see how the second
peak sharpens up in going from 57 wavevectors to 87, whereas the third peak is given well
with the smaller basis set. In this case no problems associated with Laplace solutions arise,
because the metal boundary condition eliminates them. Presumably a much smaller basis
set could be used if it was specially constructed to match the box geometry, but we have
chosen plane waves as these could be used easily with more complicated boundaries.

The problem of electromagnetic waves confined by a conductor is analogous to the
confinement of electrons by a very deep potential well, for which the embedding method
also provides a highly efficient method of solution [22]. As in the 8dimger equation case,
where extremely deep wells corresponding to almost perfect confinement can be treated,
we expect that very high conductivities can be handled in this case. Projection operator
techniques with a plane wave basis set have recently been developed to handle perfect
conductors [36], and it will be interesting to compare the two approaches.
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Figure 5. Spectral density in the interior of a metal box, sides 6, conductivityc = 1000 (in

units with c = 1). Transverse plane waves with= 13 are used as basis functions; the dotted
curve indicates 57 wavevectors, the broken curve indicates 87, and the full curve indicates 111
wavevectors in the basis set.

Appendix A

In this appendix we consider variations in (20). Using the fact that the embedding operator
is symmetric, the change i? due to a small change in the trial fiedd is given by

akz_zfldr(vX(SE)-(VxE)—dersderg(nx88)~(2—k§%)-(nXS)
B fldreé'-é’—l—fsdrsfsdrg(nxé')-g—kzz-(nxé')
_2k2fl dresE - €+ [;drs [ drg (nx8€)-g—fg-(nx5). A1)
Jidre€ - £+ [odrg [qdrg(n x &) - 2 . (n x &)

K2
Using the vector identity (3) and the divergence theorem, this becomes

5k2=2[</drag-(vxng)—kZ/dreag-g>+</drs(nx55)-(vX5)
| | S
/ 2 282
—/drsfdrs(nXBE)- S+ k-5 nxE)
s s 8k0

/[/dre€-5+[drgfdr§(nx5)-8—2;.(nx5)i|. (A.2)
I S s okg

This is zero for arbitrary changdg within region | whené satisfies
V x V x&=e(rk’E (A.3)
and for arbitrarys€ on the boundary when the surface-parallel components satisfy

)3
VxE= fdrg {E|kz+(k2—k§)—2
s 0 k2

}-(n x &). (A4)
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The first condition is of course the wave equation we are trying to satisfy, and the
second condition means that the surface-parallel componeMscdf, as well ast/, match
on either side of the boundary. What is remarkable about the second condition is that
the derivativeaz/akg, which started off life in the normalization of the field in region II,
corrects the embedding operator so that to first ordefkfn— kg) it is evaluated at the
correct value o2,

Appendix B

If the dielectric constant is constant, the wave equation for the magnetic field has the
same form as (1):
w2
VxVxH:egH (B.1)
and the boundary conditions across a boundary between dielectrics are that the surface-
parallel components off and%V x H are continuous. For a magnetic variational principle
analogous to (20), we define an embedding operator replacing region Il by

1
—Vx H|,, = /dré X" (rg, ) - (n x H) (B.2)
€l S
—again only surface-parallel components—wheréas the dielectric constant in region Il
andH is the trial value of the magnetic field on the surfate

We consider now the expression:
B E—llfldr(V X H) - (VxH)— [¢drg [¢dri (n x H) - (X" —kéaafg) - (n x H)

drH-H+ [drg [(dri(nx H) - 22 - (n x 'H)
[ s s s

k2

k2

(B.3)

Using the same arguments as in appendix A, this is stationary wheatisfies (B.1) in
region I, and on the boundary with Il the surface-parallel components satisfy:
X"

1 ’ m 2 2
G—IVXHZ SdI’S {E |kg+(k —ko)a—kg}'(nXH) (B4)

This means that the surface-parallel componenté%fx H and H match on either side
of the boundary, as we require.

The restriction to constartwithin each region in (B.1) and (B.3) does not apply to the
electric field expression (20), because of the form of Maxwell’'s equations.
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