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Abstract. A new method is derived for solving Maxwell’s equations for a region of space,
region I, joined onto region II, which may be a finite dielectric or an extended substrate. This
is based on a variational principle in which a trial field is defined explicitly only in region I,
the solution of Maxwell’s equations in region II being included through an embedding operator
defined on the boundary of region I with II. This operator is the inverse of a non-local boundary
impedance. The method is applied to calculating the normal modes of an array of dielectric
slabs, semi-infinite dielectrics separated by vacuum, and modes confined in a three-dimensional
box with conducting walls. Plane wave basis functions are used to expand the electric field
in region I, and the method shows excellent convergence in all cases. Approximate solutions
of Laplace’s equation can occur, corrupting the solutions of Maxwell’s equations with finite
frequency. It is shown how these can be suppressed.

1. Introduction

This paper describes a new method for solving Maxwell’s equations for the propagation of
electromagnetic waves in dielectric structures. There is currently much theoretical [1–5] and
experimental [1, 6–9] interest in different photonic structures—two- and three-dimensional
arrays of dielectrics [6, 8], arrays with defects [10] and so on—because of the possibility of
novel propagation effects [1]. The classical techniques of explicitly matching electric and
magnetic fields across a dielectric interface[11] become very involved for such geometries,
and other methods for finding the electromagnetic modes have been developed. Plane wave
basis set expansions of the field are widely used for finding photonic bandstructures in
periodic arrays of dielectrics [2–4, 12, 13], and spatial discretization methods have been
developed [14, 15] which can be used in a wide range of geometries [16]. Green function
scattering methods, analogous to the KKR method for electronic band structures, have also
been applied to photonics [17–19].

The embedding method which we shall describe in this paper was originally developed
for solving the electronic Schrödinger equation in a region of space (region I) joined onto
some substrate (region II) [20]. The idea of embedding is that the Schrödinger equation
may be solved explicitly only in region I, the effect of the substrate being included by
adding an embedding potential on to the Hamiltonian for region I. This embedding potential
ensures that the solutions of the Schrödinger equation in region I have the right amplitude
and derivative to match on to the solutions in region II. The method has been used to
include the effects of the semi-infinite substrate in surface calculations [21], the embedding
potential (complex in this case) broadening the discrete states in the finite surface region into
continuum states. It has also proved useful in solving the Schrödinger equation for electrons
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confined in a region of space, which may have complicated geometry, by an infinite potential
barrier [22]. Here the embedding potential provides the right reflection boundary conditions,
and it permits a basis set expansion of the wavefunction in the confined region. Region II
need not be an extended substrate: the embedding potential can replace the potential in an
enclosed region, for example replacing the deep potential inside the atomic core [23].

In this paper we shall apply the embedding method to solving Maxwell’s equations,
and we envisage analogous applications to the Schrödinger equation case. A variational
expression is derived which only contains a trial electric field in region I, which we want
to treat explicitly. The rest of space, region II, which might be an enclosed dielectric
or a substrate, is replaced by an embedding operator defined on the boundary between
regions I and II. The frequency-dependence of the embedding operator has to be built into
the variational expression, and this is connected with the normalization of the fields in
region II. In region I, we can then solve Maxwell’s equation in any way we choose, for
example using a basis set expansion, and the embedding operator ensures that the parallel
components of the electric and magnetic fields match across the boundary with region II.

Variational principles form the basis of many methods of solving Maxwell’s equations
[24], and using them in a restricted region of space is also well known [25–28]. The rest
of the system can be replaced by electric and magnetic sources on the boundary [29, 30],
and Green function techniques have been used to handle an external region in finite element
methods [27, 31, 32]. These ideas are closely related to the ideas in this paper, though the
derivation, form, and method of applying the embedding variational principle are new, to
the best of our knowledge. The embedding operator, which gives the parallel component of
the magnetic field at the boundary of region II in terms of the electric field, is the inverse
of a non-local form of the boundary impedance [33]. This concept is also widely used in
solving electromagnetic problems [34].

The plan of this paper is as follows. In section 2 we shall set up the embedding
variational principle for solutions to Maxwell’s equations in region I joined onto region II,
defining the trial wavefield explicitly only in region I, with region II replaced by the
embedding operator on the boundary. In section 3 we shall consider the generalized matrix
eigenvalue equation obtained with a basis set expansion of the electric field. In section 4
the band structure of waves travelling normal to a one-dimensional array of dielectric slabs
is calculated, and excellent convergence is achieved; because the plane waves are used to
expand the field onlybetweenthe slabs, much better convergence is obtained than with
a plane wave expansion through the whole of space (this is one of the advantages of the
embedding method). In the application described in section 5, to waves propagating between
dielectric slabs with dielectric constant less than 1 (so that total internal reflection can occur),
an important problem shows up. When the electric field has a component normal to the
boundary of region I, Laplace solutions can occur; with a finite basis set expansion, these
may have finite frequency in the variational expression, thereby corrupting the solutions
of Maxwell’s equations in which we are interested. Fortunately we have resolved this
problem, and this is explained in section 5. Finally, in section 6 we apply the method to
electromagnetic waves confined by conducting walls, calculating the spectral density of the
discrete modes broadened by the lossy surrounding medium.
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2. Embedding variational principle

From Maxwell’s equations, electromagnetic modes with frequencyω satisfy the eigenvalue
equation

∇ × ∇ ×E = ε(r)ω
2

c2
E (1)

where ε(r) is the spatially-varying dielectric constant, and we shall assume thatµ = 1
everywhere. The eigenvaluek2 = ω2/c2 is then given by stationary values of

k2 =
∫

drE · (∇ × ∇ ×E)∫
dr εE ·E (2)

with respect to variations inE(r) (which we shall assume to be real) [24]; the integrals are
over all space, and we assume thatE vanishes at larger. Using the vector identity that

∇ · (F ×∇ ×E) = (∇ × F ) · (∇ ×E)− F · (∇ × ∇ ×E) (3)

and the divergence theorem to transform the div term into a vanishing surface integral, this
can be written as [24]

k2 =
∫

dr (∇ ×E) · (∇ ×E)∫
dr εE ·E . (4)

This form has the advantage that the Hermiticity of the integrand in the numerator is explicit.
Having set up the basic variational principle, we now consider the embedding problem

where we have two regions I and II joined onto one another. Our aim is to obtain a
variational expression fork2 with a trial function definedexplicitly only in region I [20].
We first split up each integral in (4) into separate integrals over I and II:

k2 =
∫

I dr (∇ ×E) · (∇ ×E)+ ∫II dr (∇ ×E) · (∇ ×E)∫
I dr εE ·E + ∫II dr εE ·E . (5)

Implicit in this is that there should be no surface contribution from the surfaceS between
I and II—this requires that the surface-parallel components ofE are continuous acrossS.
Next we take an arbitrary trial functionE(r) in region I, which we extend into region II
with the exact solutionE(r) of (1) at some trial value ofω2/c2 = k2

0. The surface-parallel
components ofE in II are taken to match those ofE in I over S, and this inhomogeneous
boundary condition in fact definesE uniquely in II. Using (3) and the divergence theorem
(5) becomes

k2 =
∫

I dr (∇ × E) · (∇ × E)+ k2
0

∫
II dr εE ·E − ∫

S
drS n · (E ×∇ ×E)∫

I dr εE · E + ∫II dr εE ·E (6)

where the third integral in the numerator is overS, andn is the normal toS, taken outwards
from I into II.

The next stage is to rewrite the volume integrals through II in terms of surface integrals
over S. In region II we have

∇ × ∇ ×E = ε(r)k2
0E (7)

—k2
0 is a parameter rather than an eigenvalue, asE satisfies the inhomogeneous boundary

condition onS. Differentiating this equation with respect tok2
0 gives

∇ × ∇ × ∂E
∂k2

0

= ε(r)E + ε(r)k2
0
∂E

∂k2
0

(8)
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and multiplying (7) by∂E/∂k2
0 on the left, (8) byE and subtracting we obtain

ε(r)E ·E = E ·
(
∇ × ∇ × ∂E

∂k2
0

)
− ∂E
∂k2

0

· (∇ × ∇ ×E) . (9)

We now integrate through region II, substituting the vector relation (3):∫
II

dr εE ·E =
∫

II
dr

[
∇ ·

(
∂E

∂k2
0

×∇ ×E
)
−∇ ·

(
E × ∂

∂k2
0

∇ ×E
)]

=
∫
S

drS

[
n ·

(
E × ∂

∂k2
0

∇ ×E
)
− n ·

(
∂E

∂k2
0

×∇ ×E
)]
. (10)

But E at the boundaryS is fixed, so∂E/∂k2
0 = 0. Hence we obtain the interesting result∫

II
dr εE ·E =

∫
S

drSn ·
(
E × ∂

∂k2
0

∇ ×E
)
. (11)

We can now write our variational function (6) as

k2 =
∫

I dr (∇ × E) · (∇ × E)− ∫
S

drSn · [E × (∇ ×E − k2
0
∂

∂k2
0
∇ ×E)]∫

I dr εE · E + ∫
S

drSn · (E × ∂

∂k2
0
∇ ×E) (12)

—we have eliminated region II except for∇ ×E, the magnetic field in region II atS.
Because we are solving Maxwell’s equations exactly in II,∇×E can be found in terms

of surface values ofE by using a tensor Green functionΓ satisfying [24]

∇r ×∇r × Γ(r, r′; k2
0)− ε(r)k2

0Γ(r, r
′; k2

0) = 1δ(r − r′). (13)

We adopt the same strategy as before, multiplying (7) byΓ and (13) byE, subtracting,
integrating through II, and transforming to a surface integral with the divergence theorem.
This gives

E(r′) =
∫
S

drS [Γ.(n×∇ ×E)+ (∇ × Γ) · (n×E)]. (14)

If Γ is chosen to satisfy the homogeneous boundary onS:

(n× Γ) = 0 (15)

thenE within II is given by [24]

E(r′) =
∫
S

drS (∇r × Γ)rS ,r′ · (n× E). (16)

In particular we have

∇ ×E|r′S =
∫
S

drS [(∇r×)(∇r ′×)Γ]rS ,r′S · (n× E) (17)

—knowing E on S we can find∇ ×E as we require. We rewrite (17) as

∇ ×E|rS =
∫
S

dr ′S Σ(rS, r′S) · (n× E) (18)

where the embedding operator—a tensor—is given by

Σ(rS, r′S) = [(∇r×)(∇r ′×)Γ]rS ,r′S . (19)

Only the surface-parallel components ofE appear on the right ofΣ in (18), and only the
surface-parallel components of∇ × E|rS are needed in (12). This means that only the
surface-parallel components of the embedding operator have to be defined.
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Substituting (18) into (12) gives us our embedding variational expression:

k2 =
∫

I dr (∇ × E) · (∇ × E)− ∫
S

drS
∫
S

dr ′S (n× E) · (Σ− k2
0
∂Σ
∂k2

0
) · (n× E)∫

I dr εE · E + ∫
S

drS
∫
S

dr ′S (n× E) · ∂Σ∂k2
0
· (n× E) . (20)

Stationary values ofk2 with respect to variations inE in I, and with respect to parameter
k2

0 at which the embedding operatorΣ is evaluated, give the eigenvaluesk2 = ω2/c2 of
the system and the corresponding fields. In appendix A we shall go the other way round,
proving that (20) is stationary when the field satisfies

∇ × ∇ × E = ε(r)k2E (21)

in I and the surface-parallel components ofE and∇ × E match onto the solutions in II. In
other words we have found the solution for I joined onto II by solving Maxwell’s equations
in region I only, with the extra terms involving the embedding operatorΣ embeddingI onto
II. Σ is the inverse of the non-local boundary impedance [33]—this is a concept widely
used in solving boundary condition problems in electromagnetism [34].

3. Applying the embedding method

The embedding variational principle can be used to find a matrix eigenvalue equation for
the electric field andk2. We expandE(r) in region I in terms of basis functions:

E(r) =
∑
i

eiFi (r) (22)

and substituting into (20) and varying with respect to the coefficientsei we obtain the
generalized eigenvalue equation

Ae = k2Be. (23)

The matrices are given by

Aij =
∫

I
dr (∇ × Fi ) · (∇ × Fj )−

∫
S

drS

∫
S

dr ′S (n× Fi ) ·
(

Σ− k2
0
∂Σ
∂k2

0

)
· (n× Fj )

Bij =
∫

I
dr εFi · Fj +

∫
S

drS

∫
S

dr ′S (n× Fi ) ·
∂Σ
∂k2

0

· (n× Fj ).
(24)

From the structure of (24), we see that the embedding operator terms taken together appear
as ∫

S

drS

∫
S

dr ′S (n× Fi ) ·
(

Σ+ (k2− k2
0)
∂Σ
∂k2

0

)
· (n× Fj ) (25)

—the derivative terms provide a correction so thatΣ is evaluated at the right value ofk2,
correct to first order. Having found eigenvaluek2 for a trial value ofk2

0, k2
0 is set equal

to this eigenvalue and the procedure iterated until the outputk2 is adequately close to the
input k2

0. In section 4 we shall show how this works in practice: the first order correction
of the derivative terms not only ensures that (20) is a stationary principle, it also means that
the iterative procedure converges very fast.

A problem immediately arises because (20) can take its minimum value ofk2 = 0
wheneverE is a solution of Laplace’s equation within region I. These solutions have zero
curl in I; moreover,Σ = 0 at k2 = 0, so there is no constraint on the boundaryS in this
case. We would be able to avoid these solutions by taking the basis functionsFi to be
transverse waves, satisfying a homogeneous boundary condition (say [n× (∇ × Fi )] = 0)
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over S. A solution of Laplace’s equation with zero curl everywhere inside region I cannot
be built up out of such functions. However, the whole idea of embedding is to tackle
awkwardly shaped regions, and normally the basis functions will be transverse waves with
a range of amplitude and curl overS, chosen to satisfy a homogeneous boundary condition
on some simple boundary beyondS. Approximate solutions of Laplace’s equationcan be
constructed out of linear combinations of these functions, even though individually they
have finite curl. As these solutions are approximate, their expectation value in (20) gives
finite k2, which can lead to confusion with the fields we are really interested in—solutions
of (1) with finite electricand magnetic fields.

Fortunately we know how many Laplace solutions can arise with any particular basis set,
and their form. Every Laplace solution within I can be found from the boundary condition
of specifying the normal component ofE over the surfaceS. So, if the basis functions
project ontoN surface expansion functions,N linearly independent surface fields can be
constructed from these, and consequentlyN different solutions of Laplace’s equation can
occur. The cure to the problem is then to find theN exact Laplace solutions, which can
be used to augment the basis set. The augmented basis set givesN zero-values ofk2,
and finite values corresponding to uncontaminated Maxwell solutions. This procedure is
straightforward, and we shall see how it works in section 5.

4. Array of dielectric slabs

As an initial application of the embedding method we consider the propagation of light
through a periodic array of dielectric slabs. Each slab has thicknessd, with dielectric
constantε, and they are separated by vacuum, with perioda in the z-direction. The
periodicity means that we need only consider one repeat unit: the vacuum in this unit then
constitutes region I, and the single slab is region II.

The easiest way to find the embedding operator for replacing region II is to use (18),
from the relationship between the surface-parallel components of∇ ×E andE in the slab
at the trial value ofk2

0. We consider propagation of waves perpendicular to the slab, at this
stage, with fields on the left-hand and right-hand surfaces given by

Eli Eri. (26)

The field inside the slab is then

E = [E+ exp(iκz)+ E− exp(−iκz)]i (27)

with

κ = √εk0. (28)

The coefficients are given by

E+ = Er exp(iκd/2)− El exp(−iκd/2)

exp(iκd/2)− exp(−iκd/2)

E− = El exp(iκd/2)− Er exp(−iκd/2)

exp(iκd/2)− exp(−iκd/2)

(29)

(the origin is in the middle of the slab, though this subsequently drops out). Hence,

∇ ×E|l = κ[Er − El cos(κd)]

sin(κd)
j

∇ ×E|r = −κ[El − Er cos(κd)]

sin(κd)
j

(30)
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Figure 1. Variation of k with parameterk0, at kz = 0 with three basis functions. The broken
line showsk = k0, and normal modes correspond to where this line intersects a maximum or
minimum.

and the embedding operator for constant fields over the surfaces of the slab is

Σ(l, l) = Σ(r, r) = −κ
tan(κd)

(ii+ jj)

Σ(l, r) = Σ(r, l) = −κ
sin(κd)

(ii+ jj).
(31)

In region I, between the dielectric slabs, we expand the electric field in plane waves:

E = i
∑
n

en exp[i(kz + 2πn/a)z] (32)

wherekz is the Bloch wavevector. It is then straightforward to evaluate the matrix elements
in (24), with (31) for the embedding potential. In the embedding approach, this expansion
is only used for the field in region I; we contrast this with the usual approach in which
the plane wave expansion is used for the field in all space [13], minimizing the original
variational expression (4).

First we investigate the variation of the eigenvaluesk2 in (23) with k2
0, the solution

parameter in region II. Figure 1 shows the results atkz = 0 with three basis functions,
taking the slab thicknessd = 2, lattice parametera = 2π , and slab dielectric constant
ε = 10. The normal modes of the embedded system correspond to stationary values ofk as
a function ofk0, wherek = k0. At these values Maxwell’s equation in region II is solved
at the same frequency as in region I. The normal modes can then be found very easily by
iterating onk0.

Tests of the convergence with basis set size are shown in tables 1 and 2. These give
the values ofk for the four lowest normal modes, at Bloch wavevectorskz = 0 and
kz = π/a. The top set of results in each table is for the embedding method, and the lower
set is evaluated using a plane wave expansion through all space, with the usual variational
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Table 1. k-values atkz = 0 for different basis set sizes. Top results are for the embedding
method, and lower results for the usual plane wave method.

k1 k2 k3 k4

3 0 0.588 56 0.658 06 1.093 68
7 0 0.542 08 0.654 08 1.093 11

11 0 0.540 39 0.654 06 1.093 11
15 0 0.540 34 0.654 06 1.093 11

3 0 0.624 72 0.680 41 —
7 0 0.543 20 0.655 85 1.225 17

11 0 0.541 25 0.654 19 1.098 50
15 0 0.540 56 0.654 12 1.095 87
41 0 0.540 36 0.654 06 1.093 20

Exact 0 0.540 34 0.654 06 1.093 11

Table 2. k-values atkz = π/a for different basis set sizes. Top results are for the embedding
method, and lower results for the usual plane wave method.

k1 k2 k3 k4

3 0.196 79 0.400 65 0.920 25 0.983 52
7 0.195 44 0.390 72 0.824 65 0.945 17

11 0.195 43 0.390 31 0.821 68 0.945 13
15 0.195 43 0.390 30 0.821 61 0.945 13

3 0.197 58 0.407 01 1.008 26 —
7 0.195 48 0.391 28 0.831 49 1.011 19

11 0.195 45 0.390 54 0.822 08 0.949 44
15 0.195 44 0.390 37 0.821 76 0.947 00
41 0.195 43 0.390 30 0.821 62 0.945 19

Exact 0.195 43 0.390 30 0.821 61 0.945 13

principle (4). We see that the embedding method converges significantly faster than the
usual approach. One remarkable aspect of embedding is that we can actually find more
bands than basis functions—with only three basis functions we have found the fourth band.
This is a consequence of the variation ofk with k0 shown in figure 1, with more extrema
at k = k0 than the number of basis functions. Convergence of thek-values is uniform, and
in this easy case, with the electric field parallel to the surface of the dielectric, there are
no troublesome Laplace solutions. The way that a tiny basis set can yield good results is
shown by figure 2, giving the band-structure with three basis functions.

5. Oblique incidence

For a more general case, when Laplace solutions can occur, we now consider light
propagating along a layer of vacuum sandwiched between semi-infinite media of dielectric
constant less than 1 (figure 3). The light propagates in thex-direction with wavevector
kx , and the electric field lies in thex–z plane—because the electric field has a component
normal to the dielectric surface, zero-frequency Laplace solutions can occur.
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Figure 2. First four bands with three basis functions in the embedding method (full curves),
compared with exact results (broken line).

Figure 3. Vacuum sandwiched between dielectric media.

To find the embedding operator to replace the right-hand semi-infinite medium, we first
consider an evanescent solution in this region. This has the form

E = E0

(
iγ

κ
i− kx

κ
k

)
exp(ikxx − γ z) (33)
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with

κ = √εk0 andγ =
√
k2
x − κ2. (34)

So

∇ ×E = E0iκj exp(ikxx − γ z) (35)

and the embedding operator for evanescent waves is given in this case by

Σ = κ2

γ
ii. (36)

When εk2
0 > k2

x , the solution in the dielectric corresponds to travelling waves, and the
embedding operator becomes

Σ = iκ2

kz
ii (37)

with

kz =
√
κ2− k2

x. (38)

Σ for the left-hand dielectric is the same as (37).
As our trial function for the electric field in region I, the vacuum between the dielectrics,

we take transverse waves:

E =
∑
n

en(−gni+ kxk) exp i(kxx + gnz) gn = 2nπ

d̃
. (39)

The sum is over integersn, and d̃ is some spacing greater thand (figure 3), so that (39)
can produce a range of electric and magnetic fields on the boundaries with the dielectric. It
is then straightforward to calculate the matrix elements in (24).

We take a vacuum region of thicknessd = 6, between media of dielectric constant
ε = 0.5, and our basis functions are defined byd̃ = 9. Table 3 (upper part) showsk-values
for the modes withεk2 < k2

x , for kx = 1, for different basis set sizes. We see that two of
thek-values converge rapidly to the symmetric and antisymmetric waveguide modes which
decay exponentially into the media on either side, whereas two otherk-values drop to zero.
These are the Laplace solutions which correspond to fields varying like exp(ikxx) over the

Table 3. Confined modes in vacuum, thicknessd = 6, between dielectric mediaε = 0.5, at
kx = 1 for different basis set sizes. Top results are for the electric field embedding method, and
lower results from magnetic embedding.

k1 k2 k3 k4

3 1.096 42 1.259 59 0.829 65 —
7 1.084 25 1.285 77 0.195 92 0.983 67

11 1.084 07 1.278 89 0.030 04 0.256 40
15 1.084 07 1.278 73 0.004 09 0.048 11

3 1.085 25 1.288 94
7 1.084 08 1.278 93

11 1.084 07 1.278 73

Exact 1.084 07 1.278 73 Laplace Laplace
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Table 4. Confined modes in vacuum, thicknessd = 6, between dielectric mediaε = 0.5, at
kx = 1, with the augmented basis set and the electric field embedding method. The number of
basis functions includes the two exact solutions of Laplace’s equation.

k1 k2

5 1.084 22 1.281 26
7 1.084 08 1.278 87
9 1.084 07 1.278 74

11 1.084 07 1.278 73

boundaries of region I. Only these two solutions of Laplace’s equation can arise, because
there are only two surface degrees of freedom in this case, one for each surface.

Laplace solutions can be avoided in this example by working with the magnetic field
rather than the electric field—H in this geometry is parallel to the surfaces. The embedding
variational principle for the magnetic field is presented in appendix B, and using the same
basis functions as before this gives the modes given in the lower part of table 3. The
convergence is even better than with electric field embedding, and uncontaminated by
Laplace modes in this geometry.

To suppress the Laplace solutions when the field has a surface-normal component, we
augment the basis set with exact solutions of Laplace’s equation. In this case, when the
field has the variation exp(ikxx) over the boundary of region I, we add onto (39) electric
fields corresponding to the electrostatic potentials:

φ± = exp(ikxx ± kxz). (40)

The electric field variational principle then gives two modes with exactly zerok-value, and
the two confined solutions of Maxwell’s equations converge very satisfactorily (table 4).
This is the solution to the problem caused by the Laplace solutions—by augmenting the basis
set, these modes drop to zero out of harm’s way. It should in general be very easy to find
suitable augmenting solutions: they are the fields produced by surface charge densities on
the boundaries of region I, with the different possible functional forms given by projecting
the basis functions onto the boundaries. The matrix elements involving Laplace solutions
can be reduced to surface integrals, via the divergence theorem. Moreover, these solutions
only depend on the geometry of region I, and are independent of the system in region II
onto which it is embedded.

The embedding method makes it very easy to find continuum states, as well as
the discrete waveguide modes. In the continuum, rather than work with individual
eigenfunctions of (1)

∇ × ∇ ×Ei = ε(r)k2
iEi (41)

we work with the spectral density

n(r, k2) =
∑
i

ε(r)Ei (r) ·Ei (r)δ(k
2− k2

i ). (42)

This can be written in terms of the tensor Green function (13), which in a spectral
representation [24] is given by

Γ(r, r′; k2) =
∑
i

Ei (r)Ei (r
′)

k2
i − k2

. (43)
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HereEi is normalized includingε(r) as a weighting function, as in (4):∫
dr ε(r)Ei (r) ·Ei (r) = 1. (44)

So we see that

n(r, k2) = 1

π
ε(r)Im Γ(r, r; k2+ iδ) (45)

whereδ is infinitesimal. The Green function forr, r′ in region I can be expanded in the
basis set used in (22):

Γ(r, r′; k2) =
∑
ij

0ij (k
2)Fi (r)Fj (r

′) (46)

where0ij satisfies the inhomogeneous equation∑
k

(Aik − k2Bik)0kj = δij . (47)

MatricesA andB are given by (24), but without the∂/∂k2
0 terms, as the embedding operator

is evaluated at the same value ofk2 as the Green function. Then the spectral density, which
we shall evaluate integrated through region I, is given by

nI(k
2) = 1

π

∑
ij

Im0ij (k
2+ iδ)

∫
I
dr εFi · Fj . (48)

Figure 4 shows the spectral density in region I for this problem of the vacuum
sandwiched between the dielectric slabs. The augmented basis set is used, with 11 basis
functions including the two Laplace solutions. The imaginary part ofk2 has been set to
0.005, to broaden the discrete states. We see clearly how the embedding method can find
continuum states and discrete states in a simple way, on the same footing.

Figure 4. Spectral density in vacuum, thicknessd = 6, between dielectric mediaε = 0.5, at
kx = 1, with 11 basis functions in the augmented basis set.k2 has an imaginary part of 0.005.
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6. Confinement by conducting walls

The reflection of electromagnetic waves at the surface of a good conductor can be treated
quite simply, using the embedding method to replace the conducting medium by an
embedding operator at its boundary. Loss processes in the conductor lead to a complex
embedding operator, which broadens discrete states.

We find the embedding operator again from (18), using the known solutions of
Maxwell’s equations near the surface of a good conductor [35]. Taking thez-axis directed
into the conductor, the magnetic and electric fields are given by

H = jH0 exp[z(i − 1)/δ]

E = i
√

ω

8πσ
(1− i)H0 exp[z(i − 1)/δ]

(49)

where ω is the frequency,σ is the conductivity, and the skin depth is given byδ =
c/
√

2πωσ . The electric field and its curl at the surface are then given by

E = i
√

ω

8πσ
(1− i)H0

∇ ×E = j iω

c
H0

(50)

hence the embedding tensor is

Σ(rS, r′S) = (i − 1)

√
2πωσ

c
[ii+ jj]δ(rS − r′S). (51)

It is a local operator, because of the short skin depth in a good conductor, and this means
that we can use (51) at a surface of arbitrary shape. The imaginary part ofΣ is due to loss
processes in the conductor, which are fully taken account in the formalism.

As a simple application, we consider electromagnetic waves confined inside a cubic
metal box, sided. The interior of the box constitutes region I, and we replace the surrounding
metal by the embedding potential (51) on the boundary. We then calculate the Green function
using a basis of transverse travelling waves, with wavevectors2π

d̃
(h, k, l); we taked̃, the

fundamental wavelength, to be a little larger than 2d in this case. In units withc = 1,
a box-sided = 6, d̃ = 13, and the conductivityσ = 1000, we obtain the results shown
in figure 5 for the spectral density integrated through region I. Both the position and the
width of the peaks converge well with basis set size—it is interesting to see how the second
peak sharpens up in going from 57 wavevectors to 87, whereas the third peak is given well
with the smaller basis set. In this case no problems associated with Laplace solutions arise,
because the metal boundary condition eliminates them. Presumably a much smaller basis
set could be used if it was specially constructed to match the box geometry, but we have
chosen plane waves as these could be used easily with more complicated boundaries.

The problem of electromagnetic waves confined by a conductor is analogous to the
confinement of electrons by a very deep potential well, for which the embedding method
also provides a highly efficient method of solution [22]. As in the Schrödinger equation case,
where extremely deep wells corresponding to almost perfect confinement can be treated,
we expect that very high conductivities can be handled in this case. Projection operator
techniques with a plane wave basis set have recently been developed to handle perfect
conductors [36], and it will be interesting to compare the two approaches.
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Figure 5. Spectral density in the interior of a metal box, sidesd = 6, conductivityσ = 1000 (in
units with c = 1). Transverse plane waves with̃d = 13 are used as basis functions; the dotted
curve indicates 57 wavevectors, the broken curve indicates 87, and the full curve indicates 111
wavevectors in the basis set.

Appendix A

In this appendix we consider variations in (20). Using the fact that the embedding operator
is symmetric, the change ink2 due to a small change in the trial fieldδE is given by

δk2 = 2

∫
I dr (∇ × δE) · (∇ × E)− ∫

S
drS

∫
S

dr ′S (n× δE) · (Σ− k2
0
∂Σ
∂k2

0
) · (n× E)∫

I dr εE · E + ∫
S

drS
∫
S

dr ′S (n× E) · ∂Σ∂k2
0
· (n× E)

−2k2

∫
I dr εδE · E + ∫

S
drS

∫
S

dr ′S (n× δE) · ∂Σ∂k2
0
· (n× E)∫

I drεE · E + ∫
S

drS
∫
S

dr ′S (n× E) · ∂Σ∂k2
0
· (n× E) . (A.1)

Using the vector identity (3) and the divergence theorem, this becomes

δk2 = 2

[(∫
I
dr δE · (∇ × ∇ × E)− k2

∫
I
dr εδE · E

)
+
(∫

S

drS (n× δE) · (∇ × E)

−
∫
S

drS

∫
S

dr ′S(n× δE) ·
{
Σ+ (k2− k2

0)
∂Σ
∂k2

0

}
· (n× E)

)]
/[∫

I
dr εE · E +

∫
S

drS

∫
S

dr ′S (n× E) ·
∂Σ
∂k2

0

· (n× E)
]
. (A.2)

This is zero for arbitrary changesδE within region I whenE satisfies

∇ × ∇ × E = ε(r)k2E (A.3)

and for arbitraryδE on the boundary when the surface-parallel components satisfy

∇ × E =
∫
S

dr ′S

{
Σ|k2

0
+ (k2− k2

0)
∂Σ
∂k2

0

}
· (n× E). (A.4)
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The first condition is of course the wave equation we are trying to satisfy, and the
second condition means that the surface-parallel components of∇×E, as well asE, match
on either side of the boundary. What is remarkable about the second condition is that
the derivative∂Σ/∂k2

0, which started off life in the normalization of the field in region II,
corrects the embedding operator so that to first order in(k2 − k2

0) it is evaluated at the
correct value ofk2.

Appendix B

If the dielectric constantε is constant, the wave equation for the magnetic field has the
same form as (1):

∇ × ∇ ×H = ε ω
2

c2
H (B.1)

and the boundary conditions across a boundary between dielectrics are that the surface-
parallel components ofH and 1

ε
∇×H are continuous. For a magnetic variational principle

analogous to (20), we define an embedding operator replacing region II by

1

εII
∇ ×H|rS =

∫
S

dr ′S Σm(rS, r
′
S) · (n×H) (B.2)

—again only surface-parallel components—whereεII is the dielectric constant in region II
andH is the trial value of the magnetic field on the surfaceS.

We consider now the expression:

k2 =
1
εI

∫
I dr (∇ ×H) · (∇ ×H)− ∫

S
drS

∫
S

dr ′S (n×H) · (Σm − k2
0
∂Σm

∂k2
0
) · (n×H)∫

I drH ·H+ ∫
S

drS
∫
S

dr ′S (n×H) · ∂Σ
m

∂k2
0
· (n×H) .

(B.3)

Using the same arguments as in appendix A, this is stationary whenH satisfies (B.1) in
region I, and on the boundary with II the surface-parallel components satisfy:

1

εI
∇ ×H =

∫
S

dr ′S

{
Σm|k2

0
+ (k2− k2

0)
∂Σm

∂k2
0

}
· (n×H). (B.4)

This means that the surface-parallel components of1
ε
∇ ×H andH match on either side

of the boundary, as we require.
The restriction to constantε within each region in (B.1) and (B.3) does not apply to the

electric field expression (20), because of the form of Maxwell’s equations.
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